00:00 AM

MEMS Team Takes Home First Place at SSoE Design Expo

The team and Dr. Chmielus celebrate their win which comes with a $500 prize

A pandemic-inspired project received first place from judges at the schoolwide – and virtual – Fall 2020 Engineering Design Expo. The winning project was titled “Enhancement of Metal 3D Printed Respiratory Filter Design” and was conducted by MEMS students Nathan Knueppel, Fred Wohlers, Jared Melnik, Andrew Harman and Zach Ostrander. The team was sponsored by MEMS professor, Markus Chmielus in collaboration with industry partner, ExOne

The project originated in the summer of 2020 when ExOne approached Chmielus with the idea of designing a reusable metal N95 filter. N95 respirator masks are recommended by the Center for Disease Control (CDC) for healthcare professionals who are likely to come into contact with patients infected with COVID-19. They are more effective than the cloth masks recommended for public use.  The current design of N95 masks is such that they are generally unable to be sanitized and are considered disposable.  

The extent of the pandemic has stressed supply chains globally and led to shortages of personal protective equipment (PPE), including N95 respirators. The aim of the team’s design project was twofold. First, to alleviate shortages of N95 masks by designing a new mask that can be 3D printed with metal and can be cleaned and reused.  The second objective was to develop a testing method to determine if the design observed the necessary N95 filter standards. This required the design and manufacture of a test apparatus capable of measuring pressure drop and filtration efficiency for prototype designs.

Team member Zach Ostrander models the N95 mask

This project is a continuance of the work started over the summer with Chmielus’ research group. Likewise, this team’s test stand and associated developments will be used to guide future groups in the continuation of mask design and test-stand improvements. While more work needs to be completed before manufacturing a functioning N95 masks, the team made tremendous progress this semester, enough to earn them the first-place prize.

The team partnered with the Swanson Center for Product Innovation (SCPI) to help with the creation of the test stand. Time constraints limited the team from exploring filtration, so this test stand currently only tests pressure drop, but has been designed to easily adapt to future modifications/additions. In fact, Chmielus has already received several requests from faculty to use the test stand for other research purposes. Therefore, the stand will serve as a permeant addition to the testing equipment available to students and faculty at Pitt.

Looking ahead, once the silicone mask design is complete, a single ExOne printer will be capable of producing 90,000 masks per month, which would displace 1.5 million cloth N95 masks.

Chmielus notes that the group was excited about their project and inspired by being able to see how their design and progress were directly implemented into the project for use in both the short-term and long-term. According to Chmielus, despite the challenges they faced, the team was well prepared and communicated effectively.

Pressure drop test apparatus

With COVID restrictions, the team was challenged with video chats instead of in-person meetings and adhering to social distancing guidelines while working on the construction of their designs. Another novelty last semester was that the Design Expo was held virtually via Zoom.  Each team was assigned a breakout room where judges and other Expo attendees were invited to visit the various rooms to learn about each project.

Team Coordinator, Nathan Knueppel, said, “This project provided an amazing opportunity for our group to apply our diverse talents to a problem with very real consequences. The news every day provided a poignant reminder of why we were working and the impact we could have on a global scale if we were ultimately successful. I am excited for the progress we made and the work still to come and proud we could contribute to the battle against the current pandemic and to the preparation against the diseases of the future.” 

Contact: Meagan Lenze