09
May
2018
|
00:00 AM
Europe/Amsterdam

MEMS Undergraduate Wins National Center for Women & Information Technology Collegiate Award

PITTSBURGH (May 9, 2018) … Joanna Rivero, a senior mechanical engineering student at the University of Pittsburgh Swanson School of Engineering, is one of four recipients of the National Center for Women & Information Technology (NCWIT) Collegiate Award

Though careers in technology are on the rise, the number of women in the field is small. NCWIT is a non-profit organization dedicated to increasing the number of women in computing starting from K-12 and continuing through their professional careers. This award recognizes technical projects that demonstrate a high level of creativity and potential societal impact.

Rivero received the award for her work with thermoelectric generators (TEG). She explained, “There is an urgent need to find a renewable and sustainable source of energy as an alternative to the fossil fuels that we heavily depend upon. TEGs are a potential alternative that use heat to produce energy through a thermal gradient formed between two dissimilar conductors.” 

teg-diagramDiagram of a TEG showing an optimized leg (right) and the constant (left) in a per slice basis.

Rivero works as a student researcher for Dr. Matthew Barry, assistant professor of mechanical engineering and materials science at Pitt, and their project combines multiphysics and multi-method algorithms to develop mathematical models to optimize TEG power systems.

Barry and Rivero’s work builds upon established methods that determine an optimized leg shape profile of a TEG for an accurate prediction of performance. Their research, however, is unique in its execution.

“Our model gives an accurate geometric prediction that uses both numerical and analytical methods, which has never been done before,” said Rivero. “This thermal-electric coupled solution algorithm allows for the simultaneous resolution of temperature and current and, therefore, power within the TEG.”

teg-leg-shapeThe result of the optimized leg shape for a TEG with the materials used.

“Both algorithms take the cross-sectional area of each TEG leg in slices. One leg is optimized while the other is kept constant, which allows the geometric properties to be solved in relation to one leg,” explained Rivero. “We used this method because it results in more accurate performance predictions by taking into account the intermediate temperatures between each slice. The methods used showed an increase in performance for both efficiency and power output when compared to conventional modeling.”

In addition to the $10,000 prize, recipients of the NCWIT Collegiate Award are also given a scholarship to attend the organization’s Summit on Women in IT from May 15-17 in Grapevine, Texas. 

In the fall, Rivero will continue her studies as a PhD student in the Swanson School and looks forward to taking advantage of more opportunities as she continues to grow at Pitt. She said, “I had no clue I would end up in this field. Dr. Barry’s work is heavily dependent on computing and technology, and what began as a requirement to work in his group turned into a passion of mine after I realized the huge impact technology brings to advancing and aiding research.” 

###

Contact: Leah Russell